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Higher-order correlations for fluctuations in the presence of fields
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The higher-order moments of the fluctuations for thermodynamic systems in the presence of fields are
investigated in the framework of a theoretical method. The method uses a generalized statistical ensemble
consistent with an adequate expression for the internal energy. The applications refer to the case of a system in
a magnetoquasistatic field. In the case of linear magnetic media, one finds that, for the description of the
magnetic induction fluctuations, the Gaussian approximation is satisfactory. For nonlinear media, the corre-
sponding fluctuations are non-Gaussian, having a non-null asymmetry. Furthermore, the respective fluctuations
have characteristics of leptokurtic, mesokurtic and platykurtic type, depending on the value of the magnetic
field strength as compared with a scaling factor of the magnetization curve.
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I. INTRODUCTION

In our previous work@1# we have presented a phenom
enological approach to the fluctuations for thermodynam
systems in the presence of electromagnetic fields. In
work the fluctuations were evaluated only by second or
numerical characteristics~correlations and moments!. From a
more general probabilistic perspective@2–6# the fluctuations
in physical systems must be evaluated also by mean
higher order numerical characteristics~higher order correla-
tions and moments!. In the present paper, we present an a
proach for the evaluation of higher order correlations t
characterize the systems considered.

In Sec. II we present the general considerations and r
tions regarding the problems mentioned. In Sec. III we p
ceed to evaluate higher order moments for linear magn
systems~in the presence of magnetoquasistatic field!, as well
as for nonlinear magnetic media. The results provide re
tions which might be compared with experimental data.

II. THEORETICAL CONSIDERATIONS

A. Statistical ensembles for generalized systems

Following our previous work@1# we consider a general
ized system described by the set of extensive and field v
ables (U,X1 ,X2 , . . . ,Xn ,Y1 ,Y2 , . . . ,Ym), where U de-
notes the generalized internal energy,Xi ( i 51,2, . . . ,n)
signify the usual extensive variables, excepting the entr
~for systems in the absence of fields!, while Yj ( j
51,2, . . . ,m) mean the additional variables that arise due
the presence of the fields.

In the framework of fluctuation theory, the thermod
namical quantities represent the mean~or expected! values of
random variables. In the following we denote byĀ the ex-
pectation of the random variableA. In this context, we define
U5Ē, whereE denotes the energy regarded as a rand
variable.
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We take the investigated system as a small part of a la
isolated ensemble. Both the system and its environment
macroscopic bodies. In the following the quantitiesXi andYj
are defined as fluctuating~random! variables. The joint prob-
ability density function of the quantitiesE, $Xi% i 51

n and
$Yj% j 51

m can be expressed as@7–9#

w5Z21 expS 2bE2(
i 51

n

a iXi2(
j 51

m

g jYj D . ~1!

Here the independent random variables are phase spac
ordinates (qr ,pr), Xi andYj .

In Eq. ~1! the normalization factor is determined by

Z5E •••E )
i 51

n

dXi exp~2a iXi !)
j 51

m

dYj exp~2g jYj !

3E
G
e2bEdG, ~2!

wheredG represents the elementary volume in phase sp
The statistical integralZ is a function of the quantitiesb,

$a i% i 51
n and$g j% j 51

m . Hence,

d~ ln Z!5
1

Z

]Z

]b
db1

1

Z (
i 51

n
]Z

]a i
da i1

1

Z (
j 51

m
]Z

]g j
dg j

where

1

Z

]Z

]b
52E Ew dV52Ē,

1

Z

]Z

]a i
52E Xiw dV52Xi ,

1

Z

]Z

]g i
52E Yjw dV52Yj ,

dV5)
i 51

n

dXi)
j 51

m

dYjdG.
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The physical significance of the parametersb, a i andg j
can be identified from

dS ln Z1bĒ1(
i 51

n

a iXi1(
j 51

m

g jYj D
5bdĒ1(

i 51

n

a idXi1(
j 51

m

g jdYj ~3!

or usingU5Ē

dS ln Z1bU1(
i 51

n

a iXi1(
j 51

m

g jYj D
5bdU1(

i 51

n

a idXi1(
j 51

m

g jdYj . ~4!

From thermodynamics in the presence of fields@10,11# we
have

dU5TdS1(
i 51

n

ĵ idXi1(
j 51

m

c jdYj , ~5!

whereS, T, andĵ i denote respectively nonfield entropy, fie
dependent temperature, and other intensive parame
whereasc j denote field variables.

From Eqs.~4! and ~5! one obtains

dS ln Z1bU1(
i 51

n

a iXi1(
j 51

m

g jYj D
5bTdS1(

i 51

n

~a i1bĵ i !dXi1(
j 51

m

~g j1bc j !dYj .

~6!

The left-hand side of Eq.~6! is an exact differential. The
number of terms on the right-hand side depends on the
constraints@10,11#. Furthermore as it must be also an exa
differential the following relations must hold,

b5
1

kT
, ~7!

a i52bĵ i52
ĵ i

kT
, ~8!

g j52bc j52
c j

kT
, ~9!

wherek denotes Boltzmann’s constant.
We observe that the quantities$a i% i 51

n are functions of the
field dependent intensive parameters.

B. Evaluation of higher-order correlations and moments

The mean values of the fluctuating quantities can
evaluated through the following relations:
04611
rs,

ld
t

e

U5Ē52F]~ ln Z!

]b G
a i ,g j

,

i 51,2, . . . ,n, j 51,2, . . . ,m ~10!

Xi52F]~ ln Z!

]a i
G

b,a l ,g j

, lÞ i , ~11!

Yj52F]~ ln Z!

]g j
G

b,a i ,g l

, lÞ j . ~12!

Expressions of the type) i(dXi)
r i) j (dYj )

sj are called
higher-order correlations. By using the statistical sumZ, as
introduced above, for some of the respective correlations
obtains the expressions

dXadXb5
]2~ ln Z!

]aa]ab
52

]Xb

]aa
5kT

]Xb

]ĵa

, a,b51,2, . . . ,n,

~13!

dYadYb5
]2~ ln Z!

]ga]gb
52

]Yb

]ga
5kT

]Yb

]ca
, a,b51,2, . . . ,m,

~14!

dXadYb5
]2~ ln Z!

]aa]gb
52

]Yb

]aa
5kT

]Yb

]ĵa

,
a51,2, . . . ,n,

b51,2, . . . ,m,
~15!

dXadXbdXc52
]3~ lnZ!

]aa]ab]ac
5

]2Xc

]aa]ab

5k2T2
]2Xc

]ĵa]ĵb

, a,b,c51,2, . . .n, ~16!

dYadYbdYc52
]3~ ln Z!

]ga]gb]gc
5

]2Yc

]ga]gb

5k2T2
]2Xc

]ca]cb
, a,b,c51,2, . . .m,

~17!

dXadYbdYc52
]3~ ln Z!

]aa]gb]gc
5

]2Yc

]aa]gb

5k2T2
]2Yc

]ĵa]cb

,
a51,2, . . .n,

b,c51,2, . . . ,m,
~18!

The formulas for the correlations of orders higher than
are generally more complicated. The higher-order mome
can be obtained by means of the following recurrence f
mulas@7#:

~dXa!n1152
]

]aa
~dXa!n2n~dXa!n21

]Xa

]aa
, ~19!
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~dYa!n1152
]

]ga
~dYa!n2n~dYa!n21

]Ya

]ga
. ~20!

As examples we give here the expressions of the mom
(dXa)4 and(dYa)4:

~dXa!452
]3Xa

]aa
3

13S ]Xa

]aa
D 2

5S kT
]

]ĵa
D 3

Xa13S kT
]Xa

]ĵa
D 2

, ~21!

~dYa!452
]3Ya

]ga
3

13S ]Ya

]ga
D 2

5S kT
]

]ca
D 3

Ya13S kT
]Ya

]ca
D 2

.

~22!

The fourth order moments are of interest for the eval
tion of the so-called excess coefficient,

CE5
~dXa!4

@~dXa!2#2
23, ~23!

which is an indicator of the deviation from the Gaussi
distribution @2#.

III. HIGHER-ORDER MOMENTS FOR SYSTEMS
IN A MAGNETOQUASISTATIC FIELD

A. Linear magnetic media

Let us consider a uniformly magnetized continuous m
dium, situated in a magnetoquasistatic field. The system
characterized by the extensive parameters (U,V,N,B),
whereV, N and B denote the volume, number of particle
and magnetic induction respectively. In the case of lin
magnetic systems the differential of the internal energy
given by @10,11#

dU5TdS2 p̂dV1 ẑdN1VH•dB. ~24!

For the sake of brevity we omitted the mean symbol fro
above the parametersV, N and B, which will continue to
represent mean values henceforth.

Equations~13! and~16! show that the moments associat
with the usual thermodynamic quantities, i.e., volumeV or of
particles numberN, are functions of the parametersĵ i ,
which depend on the field constraints.

For example, in the caseB5const one obtains for the
volumeV

~dV!252kTS ]V

] p̂
D

T,ẑ,B

, ~25!

~dV!35k2T2S ]2V

] p̂2D
T,ẑ,B

, ~26!

where@10#
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p̂~B5const!5pB,N5p2
1

2
H•B2

1

2
H2r

]m

]r
, ~27!

H signifies the magnetic field strength,m is the magnetic
permeability, andr5N/V.

By using the properties of Jacobians, Eq.~25! can be
transformed as follows:

~dV!252kT
]~V,ẑ,T,B!

]~ p̂,ẑ,T,B!

52kT
]~V,ẑ,T,B!

]~V,N,T,B!

]~V,N,T,B!

]~ p̂,ẑ,T,B!

52kT

S ]ẑ

]N
D

T,V,B

S ] p̂

]V
D

T,N,B
S ]ẑ

]N
D

T,V,B

1S ]ẑ

]V
D

T,N,B

2 . ~28!

In the above relation use was made of2(] p̂/]N)T,V,B

5(]ẑ/]V)T,N,B . Note that the result~28! is the same as the
one obtained@1# within the Gaussian approximation.

We proceed to evaluate the second and third order par
eters of fluctuations for the magnetic inductionB. For sim-
plicity we suppose that volume and particle number
fixed. Using relations~14!, ~17! and ~22! we find

~dB!25
kT

V S ]B

]H D
T,V,N

5
kTm

V
, ~29!

~dB!35S kT

V D 2S ]2B

]H2D
T,V,N

5S kT

V D 2]m

]H
50. ~30!

Equation~29! is identical to the one obtained@1# within
the Gaussian approximation. Note that, in the case of lin
magnetic media,(dB)3 vanishes, becausem is independent
of H. In this case the excess coefficient~23! also vanishes.
These facts show that, in the case alluded to, the Gaus
approximation is sufficient for a quantitative description
the fluctuations ofB.

B. Nonlinear magnetic media

In the case of nonlinear magnetic media,m depends onH.
Therefore, evaluation of the moments of orders higher tha
becomes necessary.

We approach this case under the constraintsV5const and
N5const, so that the internal energyU reduces to

dU5TdS1VH•dB.

This gives for the moments of 2, 3 and 4 order ofB:

~dB!25
kT

V S ]B

]H D
T,V,N

, ~31!
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~dB!35S kT

V D 2S ]2B

]H2D
T,V,N

, ~32!

~dB!45S kT

V D 3S ]3B

]H3D
T,V,N

13FkT

V S ]B

]H D
T,V,N

G2

5S kT

V D 3S ]3B

]H3D
T,V,N

13@~dB!2#2. ~33!

In order to find the explicit expressions of(dB)2, (dB)3

and (dB)4 it is necessary to know the expression of t
function B5B(H). To this end we use the well know
Langevin equation:

B5m0MsS cotha2
1

aD1m0H, ~34!

where

a5
m0mH

kT
, ~35!

Ms represents the saturation magnetization,m0 is the
vacuum permeability, andm signifies the magnetic momen
of an individual molecule.

By means of some simple mathematical operations
finds

~dB!25
kTm0

V Fm0mMs

kT S 1

a2
2

1

sinh2 a
D 11G , ~36!

~dB!35
2m0

3m2Ms

V2 S cosha

sinh3 a
2

1

a3D , ~37!

~dB!45
2m0

4m3Ms

V3 S 3

a4
1

sinh2 a23 cosh2 a

sinh4 a
D

13H kTm0

V Fm0mMs

kT S 1

a2
2

1

sinh2 a
D 11G J 2

.

~38!

Another functional dependence ofB on H is given@12# by

B5m0MsF12expS 2
H2

2s2D G1m0H, ~39!

wheres is a scaling factor.
In this case the differential permeabilitymd5dB/dH is

given by the formula

md5m0S 11
MsH

s2
e2H2/2s2D .

From this relation it follows that
04611
e

dmd

dH
5

m0Ms

s2 S 12
H2

s2 D e2H2/2s2

and

d2md

dH2
52

m0MsH

s4 S 32
H2

s2 D e2H2/2s2
.

For H5s we havedmd /dH50 andd2md /dH2,0. These
conditions imply a maximum for the differential permeab
ity at H5s.

Figure 1 shows a plot ofmd /m0 for the caseMs54s.
By using the general formulas for the 2nd, 3rd, and 4

order moments of the random variableB one obtains

~dB!25
m0kT

V H MsH

s2
expS 2

H2

2s2D 11J , ~40!

~dB!35S kT

V D 2 m0Ms

s2 S 12
H2

s2 D expS 2
H2

2s2D , ~41!

~dB!45S kT

V D 3 m0MsH

s4 S H2

s2
23D expS 2

H2

2s2D
13S m0kT

V D 2H MsH

s2
expS 2

H2

2s2D 11J 2

. ~42!

Finally we wish to note the following observations.

~1! (dB)3 change its sign at the pointH5s, where the
differential permeability md5dB/dH takes its maximal
value @this means the inflection point of the functionB

5B(H)]. For H,s, the moment(dB)3 is positive while for
H.s it is negative. Figure 2 shows a plot of the functio
f 35(dB)3/b, whereb5(kT/V)2m0 /s.

~2! The fourth order moment(dB)4 gives information
about the deviation from the Gaussian approximation. Thi
because it is implied in the so-called excess coefficient~23!.
In the case discussed here we have

FIG. 1. A plot of md /m0 for the caseMs54s.
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CE5
kT

V

MsH

m0s4

S H2

s2
23D expS 2

H2

2s2D
H MsH

s2
expS 2

H2

2s2D 11J 2 . ~43!

In probabilistic terminology@13# the distribution of a random
variable is called leptokurtic, mesokurtic or platykurtic as t
excess coefficientCE satisfies the conditionsCE.0, CE
50 andCE,0 respectively. Then, by taking into account t
expression~43! of CE one can say that, for the situatio
studied here the fluctuations of the magnetic inductionB are
leptokurtic, mesokurtic and platykurtic as the magnetic fi
strengthH satisfies the conditionsH.A3s, H5A3s, and
H,A3s, respectively. Figure 3 shows a plot of the functi

f E5CE

Vm0s2

kT
.

IV. SUMMARY AND CONCLUSIONS

~1! We investigated the higher-order moments of the fl
tuations for complex thermodynamic systems~i.e., systems
considered in the presence of fields!. Our approach uses
generalized statistical ensemble. We considered the
when the energyE, the usual extensive parameters$Xi% i 51

n

FIG. 2. A plot of the functionf 3 for the caseMs54s.
,

04611
d

-
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and the field parameters$Yj% j 51
m are fluctuating random vari

ables. We find that the higher-order moments of fluctuatio
depend on the field constraints.

~2! The general results from Sec. II were particulariz
for the case of a system situated in a magnetoquasis
field. If these systems are magnetically linear, then the th
order moment of the magnetic induction and the excess
efficient vanish. Therefore, the description of fluctuations
the magnetic induction can be done in the framework of
Gaussian approximation.

~3! For nonlinear magnetic media(dB)3Þ0. Conse-
quently the fluctuations ofB deviate from the normal distri-
bution. The respective deviations are characterized by
various values of the excess coefficientCE given by the for-
mula ~43!. This formula shows that the fluctuations ofB can
be leptokurtic, mesokurtic and platykurtic for the casesH
.A3s, H5A3s andH,A3s, respectively.
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FIG. 3. A plot of the functionf E for the caseMs54s.
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