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Higher-order correlations for fluctuations in the presence of fields
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The higher-order moments of the fluctuations for thermodynamic systems in the presence of fields are
investigated in the framework of a theoretical method. The method uses a generalized statistical ensemble
consistent with an adequate expression for the internal energy. The applications refer to the case of a system in
a magnetoquasistatic field. In the case of linear magnetic media, one finds that, for the description of the
magnetic induction fluctuations, the Gaussian approximation is satisfactory. For nonlinear media, the corre-
sponding fluctuations are non-Gaussian, having a non-null asymmetry. Furthermore, the respective fluctuations
have characteristics of leptokurtic, mesokurtic and platykurtic type, depending on the value of the magnetic
field strength as compared with a scaling factor of the magnetization curve.
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[. INTRODUCTION We take the investigated system as a small part of a large,
isolated ensemble. Both the system and its environment are
In our previous work 1] we have presented a phenom- macroscopic bodies. In the following the quantitgsandY;
enological approach to the fluctuations for thermodynamicaére defined as fluctuatingandon) variables. The joint prob-
systems in the presence of electromagnetic fields. In thiability density function of the quantitieg€, {X;}[_, and
work the fluctuations were evaluated only by second orde{Yj}}"=l can be expressed §8—9)
numerical characteristi¢sorrelations and momentdrom a
more general probabilistic perspecti\&-6] the fluctuations . " m
in physical systems must be evaluated also by means of w=Z""ex —,BE—Z aixi_Z YiYil- @
higher order numerical characteristi¢sgher order correla- =t =
tions and momenjsIn the present paper, we present an apjare the independent random variables are phase space co-
proach for the evaluation of higher order correlations that, §inates a..p,), X; and; .
characterize the systems considered. o !
In Sec. Il we present the general considerations and rela-
tions regarding the problems mentioned. In Sec. Ill we pro- n m
ceed to evaluate higher order moments for linear magnetic z:f j IT dX exp—axp 1 dY;exp—v,Y))
systemgin the presence of magnetoquasistatic fiedd well i=1 =1
as for nonlinear magnetic media. The results provide rela-
tions which might be compared with experimental data. xf e FEdT, 2)
r

In Eqg. (1) the normalization factor is determined by

Il. THEORETICAL CONSIDERATIONS wheredI" represents the elementary volume in phase space.
A. Statistical ensembles for generalized systems Trt]e statlstlcarLlntegraI is a function of the quantitieg,

_ _ _ {ei}i=, and{y;}j,. Hence,

Following our previous work1] we consider a general-
ized system described by the set of extensive and field vari- 162 1 9Z 1M 9z
ables U,X1,Xz, ... Xn,Y1,Y2, ... .Y,), where U de- dinz)=7 Zzds+3 2 —dait 5 X ——dy,
notes the generalized internal energy, (i=1,2,...n) =1 od =1 7Y
signify the usual extensive variables, excepting the entrop%here
(for systems in the absence of fieldswhile Y; (j
=1,2,... m) mean the additional variables that arise due to 192 .
the presence of the fields. S ==-— f Ew dQ=—E,

In the framework of fluctuation theory, the thermody-
namical quantities represent the méanexpectefivalues of 1 92

random variables. In the following we denote Kythe ex- 7 a—ai— —f Xiw dQ) = —X;,
pectition of the random variabe In this context, we define

U=E, whereE denotes the energy regarded as a random 147 _
variable. ——_=—f Yiw dQ=-Y;,

n
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The physical significance of the parametgrsa; and y; _ d(In2)
can be identified from U=E=- 9B ,
al ,’yl
d |nz+ﬁE+2l aixi+2l ijj) i=1,2,...n, j=1,2,...m (10)
i= j=
o _m o Y— d(InZ) i 11
=BdE+ D, adX+ Y, v,dY, 3) = o 1#i, (11)
i=1 =1 Biay vy
or usingU=E —  [a(nz) _
9 Yi=—|— £ (12)
Y Biaj,y

d

n m
INZ+BU+ >, X+ Y
A ;1 o 12::1 Yl ’) Expressions of the typél;(5X;)"'II;(8Y;)% are called
N m higher-order correlations. By using the statistical sznas
v v introduced above, for some of the respective correlations one
= + dX;+ dY;. . -
pdu ;1 aidX ,Zl 7 dY; @ obtains the expressions

From thermodynamics in the presence of figlti8,11 we

AnZ) Xy X

have 5X35Xb: r?aa(?ab = aaa kT?ga, a,b:1,2, ... N,
noom - (13
dU=TdS+ >, §dX+ >, ¢;dY;, (5) _ _
=1 =1 7(InZ) Yy Yy
NadVy= 5= m=— 5 2=kTo ab=12,..m,
whereS, T, and; denote respectively nonfield entropy, field Ya?Yo Ya a (14)

dependent temperature, and other intensive parameters,
whereasy; denote field variables.

_#Anz) A, | _aY, a=12,...p,

From Egs.(4) and (5) one obtains . 6Yp= — = — — 2 =kT—
as{4) ® A% G adyy dag 0&, b=12,...m,

n - m o (15)
L Hedkorom L 2)__ X,
i . =& — atapPhe dagdapda, B dazday

:BTdS+_E (ai+,8§i)dxi+2 (y;+ By dy;. _
i=1 =1 52Xc

©6) =k?’T>——, a,b,c=1,2,...n, (16

€&y
The left-hand side of Eq(6) is an exact differential. The 5 o
number of terms on the right-hand side depends on the field o =5 = 3*(InZ) 7Y

constraintd 10,11). Furthermore as it must be also an exact OYa0YpoY =~ Y200V N dYa0vp
differential the following relations must hold, o
X

=k2T? °. . abc=12...m,
P @) ey
kT’
17)
5 & R #(Inz Y,
ai:_ﬁfi:_k_-l-, 8 SX30Y Y = (nz) _ ¢

daadypdye  daadvp

92Y. a=12,...n,
Y= B T 9 =KeT2—° (18)
9& 0, b,c=12,...m,
wherek denotes Boltzmann’s constant.

PR _ The formulas for the correlations of orders higher than 3
We observe that the quantitiés;};_ , are functions of the

are generally more complicated. The higher-order moments

field dependent intensive parameters. can be obtained by means of the following recurrence for-
mulas[7]:
B. Evaluation of higher-order correlations and moments o
The mean values of the fluctuating quantities can be —(5Xa)n+1:_ J (5xa)“—n(5xa)”—1ax"" (19)
evaluated through the following relations: dagy dagy
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P E Sy T v L KA
(6Ya) Gy OYa) " mn(5Ya)
a

I
va’

A 1 1 ., du
(20) p(B=cons)=pgx=p— 5H-B- 5 H poo

(27)

As examples we give here the expressions of the momentd signifies the magnetic field strengtp, is the magnetic

(6X)* and(8Y,)*: permeability, angp=N/V.
o By using the properties of Jacobians, E&5) can be
— X, Xq transformed as follows:
(6X)'=——5+3
Jda dag N
: — a(V,{,T,B)
3 Pk (8V) :_kTﬁ
(kT ] X+l kT2, @) /p.L.T.B)
2 9%a B a(V,¢,T,B) 4(V,N,T,B)
(57— ‘73Y_a+3(‘w_a)2—(w 7 1V es kTav_a)z HV.NT.B) 4p,L.T.B)
2 o"‘yg 9Ya A 2 sl 072
(22 N
o T,V,B
The fourth order moments are of interest for the evalua- =—kT pr 7 A (28)
tion of the so-called excess coefficient, (_p) (_) (_)
7 N T,N,B IN T,V,B N T,N,B
oX
Ce= (OXa) (23)

In the above relation use was made of(9p/dN)ry.g

=(¢92/&V)T,N,B. Note that the result28) is the same as the
which is an indicator of the deviation from the Gaussianone obtained1] within the Gaussian approximation.

CAEE

distribution[2]. We proceed to evaluate the second and third order param-
eters of fluctuations for the magnetic inductiBn For sim-
IIl. HIGHER-ORDER MOMENTS FOR SYSTEMS plicity we suppose that volume and particle number are
IN A MAGNETOQUASISTATIC FIELD fixed. Using relationg14), (17) and(22) we find
A. Linear magnetic media . KT/ oB KT
Let us consider a uniformly magnetized continuous me- (0B)"= V\oH v N:T’ (29)

dium, situated in a magnetoquasistatic field. The system is

characterized by the extensive parametets,(,N,B), 2
whereV, N and B denote the volume, number of particles (55)3:<k_T)
and magnetic induction respectively. In the case of linear \4
magnetic systems the differential of the internal energy is

given by[10,1]] Equation(29) is identical to the one obtaindd] within

the Gaussian approximation. Note that, in the case of linear
magnetic media(sB)® vanishes, because is independent

of H. In this case the excess coeffici€@B) also vanishes.
These facts show that, in the case alluded to, the Gaussian
approximation is sufficient for a quantitative description of
the fluctuations oB.

azB) (kT) o, (30)
_2 = — — .
JH TUN V) oH

dU=TdS-pdV+ZdN+VH-dB. (24)

For the sake of brevity we omitted the mean symbol from
above the parameteis, N and B, which will continue to
represent mean values henceforth.

Equationg13) and(16) show that the moments associated
with the usual thermodynamic quantities, i.e., voluvher of

particles numberN, are functions of the parameteﬁs, B. Nonlinear magnetic media

which depend on the field constraints. In the case of nonlinear magnetic mediagdepends oi.
For example, in the casB=const one obtains for the Therefore, evaluation of the moments of orders higher than 2
volumeV becomes necessary.
We approach this case under the constraifitsconst and
— (av N=const, so that the internal energlyreduces to
(6V)e=—kT| — , (25
P18 dU=TdS+VH-dB.
R 92V This gives for the moments of 2, 3 and 4 orderBof
(V)*=KT?| —; , (26)
P 158 55)= kT( (?B) @31
where[10] VvV \dH T,V,N,
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S kT\?2[ ¢°B -
(6B)°= v \ a2 , (32
T,V,N
kT\3 o°B kT/oB 2
@B =\ | e v lon
JH TV.N RN
kT\3[ o° —_—,
(7H T,V,N

In order to find the explicit expressions (8B)?, (5B)>

and (8B)* it is necessary to know the expression of the
function B=B(H). To this end we use the well known

Langevin equation:

1
B= MOMS( cotha— a + woH, (39
where
HomH

M, represents the saturation magnetizatigng is the

PHYSICAL REVIEW E66, 046116 (2002
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FIG. 1. A plot of ugq/u for the caseM =40

dug _ poMs
dH 2 o2

2
_ H_) e~ H?20?

and

dzﬂd _ moMsH

dH? ot

0_2

2
H ) e—Hz/za2

vacuum permeability, anch signifies the magnetic moment oy 4=+ we havedug/dH=0 andd2uq/dH2<0. These

of an individual molecule.

conditions imply a maximum for the differential permeabil-

By means of some simple mathematical operations ONRy at H=o0.

finds

kTuo
\%

oMM
KT

(6B)?= ., (36

! ! +1
a? sinkfa

ZMSmZM s
V2

(6B)°= (37

sinffa a°

cosha 1 )

3 sinfa—3 cosKa

a4

2pgm*M

Y

sintt a

KTwo
\%

1 1

8.2

oMM

KT 1

+3
sintf a

} 2
Another functional dependence Bfon H is given[12] by

H2
l-exp ———
207

whereo is a scaling factor.
In this case the differential permeabilifyy=dB/dH is
given by the formula

(38)

B=wuoMs + moH, (39

Md= Mo

1+ MgH e H20% |
o2

From this relation it follows that

Figure 1 shows a plot of.y/uq for the caseM =40
By using the general formulas for the 2nd, 3rd, and 4th
order moments of the random variali3eone obtains

M.H p( H* +1 (40)
exp ——— s
o2 202

g

MoK T

(6B)*=—

2
wokT\ 2| MH H?2
+3(V){UZ€‘X ;._2—'—1 . (42
Finally we wish to note the following observations.
(1) (6B)® change its sign at the poit=o, where the

differential permeability uq=dB/dH takes its maximal
value [this means the inflection point of the functidh

=B(H)]. ForH< o, the momen{ 5B)? is positive while for
H> o it is negative. Figure 2 shows a plot of the function
f3=(6B)>b, whereb=(kT/V)?uq/o.

(2) The fourth order momen(sB)* gives information
about the deviation from the Gaussian approximation. This is
because it is implied in the so-called excess coeffici28k
In the case discussed here we have
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FIG. 2. A plot of the functionf; for the caseM =40 FIG. 3. A plot of the functionfg for the caseM =40
H? H? and the field parametef¥;} ", are fluctuating random vari-
KT M.H _2_3 exp — - ables. We find that the higher-order moments of fluctuations
p=— — i 5. (43  depend on the field constraints.
V' poo® [ MH H? (2) The general results from Sec. Il were particularized
o2 expg — 252 +1 for the case of a system situated in a magnetoquasistatic

field. If these systems are magnetically linear, then the third

In probabilistic terminology13] the distribution of a random order moment of the magnetic induction and the excess co-
variable is called |eptokurtic' mesokurtic or p|atykurtic as theefﬁCient vanish. Therefore, the descrlptlon of fluctuations of
excess coefficienCg satisfies the condition€>0, C¢  the magnetic induction can be done in the framework of the
=0 andCg<0 respectively. Then, by taking into account the Gaussian approximation.

expression(43) of Cg one can say that, for the situation  (3) For nonlinear magnetic medi¢sB)3#0. Conse-
studied here the fluctuations of the magnetic inducBaare  quently the fluctuations o8 deviate from the normal distri-
leptokurtic, mesokurtic and platykurtic as the magnetic fieldoution. The respective deviations are characterized by the
strengthH satisfies the conditionsi> /30, H=+/3c, and  various values of the excess coeffici€ given by the for-

H< /30, respectively. Figure 3 shows a plot of the function Mula(43). This formula shows that the fluctuations Bfcan
be leptokurtic, mesokurtic and platykurtic for the casés

V oo > 30, H=30 andH< /3¢, respectively.
kT

fe=Ceg
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